Reduction of gravity measurements

• Recall that, if the Earth was an homogeneous ellipsoid:

 $g = g_o(1 + k_1 \sin^2 \Phi - k_2 \sin^2 2\Phi)$

- Gravity measurements:
 - Objective: look for deviations from this reference value
 - Problem: measurements are (usually) not made on the reference ellipsoid...
 - Solution: "reduce" the measurements to "bring" then on the ellipsoid
- Reduction = "correct" the measurements from the effect of:
 - Attraction of terrain around the measurement site: $1 \rightarrow 2$
 - Attraction of rock mass between *M* and *R*: $2 \rightarrow 3$
 - Elevation of M w.r.t. reference ellipsoid: $3 \rightarrow 4$
- What do we learn if:
 - $-g_{reduced} = g_{reference}?$
 - $g_{reduced} \neq g_{reference}$?

Gravity corrections

Terrain correction:

Compensates for the reduction of *g* due to terrain around the measurement site

- Always added to g_{measured}
- Complex calculation: discretize topographic map or use DEM

Bouguer plate correction:

Compensate for the gravitational attraction of a plate of constant thickness h

Free-air correction:

Compensates for the elevation of the measurement site w.r.t. the ellipsoid

Bouguer and free-air gravity anomalies

• Free-air anomaly = difference between g_{measured} and g_{reference} corrected for elevation:

$$A_{FA} = g_m - (g_r - 0.3086 h)$$

• **Bouguer anomaly** = difference between $g_{measured}$ and $g_{reference}$ corrected for elevation, plate, and terrain:

$$A_B = g_m - (g_r - 0.3086 h) - (0.049 \rho h) + \rho T$$

Bouguer and free-air gravity anomalies

- (a) Mountain is supported by the strength of the crust
- (b) Mountain is supported by a crustal root that projects into the denser mantle

Hypothetical Bouguer anomaly over continental and oceanic areas.

Gravity anomalies across mountains

